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Optimize then discretize, or discretize then optimize?

Full-order model
res.

LSPOGARI’EOM Full-order model
res. OAE
X} = 3ngmi"||A’n (®z) H% < min; r"(x") =0,
n=1..M n=1.. M

min. >

dsg

dt

Galerkin ROM
ODE

(x, t) = arg min||®z — f(x, t)||3
z

m Galerkin: continuous-residual minimization

v

time discretization

4

Galerkin ROM
OAE

o7 r" (0x7) =0,
n=1... M

m LSPG [C. et al, 2011]: discrete-residual minimization

Comparative analysis: K. Carlberg, M. Barone, H. Antil, “Galerkin v.
least-squares Petrov—Galerkin projection in nonlinear model reduction,”
Journal of Computational Physics, 330:693-734, 2017.
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CaVity—ﬂOW pr0b|em Collaborator: M. Barone (SNL)

m Unsteady, compressible m M =06
Navier—Stokes m Re — 6.3 x 10°

m DES turbulence model m 1.2 x 10° degrees of

m Finite-volume discretization freedom

m BDF2 linear multistep time m CFD code: AERO-F
integrator [Farhat et al., 2003]
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Full-order model responses

vorticity field

pressure field
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POD modes ® (energy component)

(a) mode 1 (b) mode 21 (c) mode 101

(d) mode 201 (e) mode 401
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Galerkin and LSPG responses for basis dimension p = 564
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- Galerkin ROMs produce non-physical solutions
m LSPG ROMs

+ accurate and stable (most time steps)
- more expensive than the FOM (1.3 hours>1 hour, 48 CPU)
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Sample mesh [c. et al., 2013]

%" = arg min || (P®g)" P r" (®2) |3
ZERP e —

2

AGNAT
u AGNAT: gappy POD [Everson and Sirovich, 1995] approx of residual
m Sample mesh: Extract mesh subset needed to compute Pr”
m Related: RID [Ryckelynck, 2005], subgrid [Haasdonk et al., 2008]

m Sample mesh: 4.1% nodes, 3.0% cells
-+ Small problem size: can run on many fewer cores

Structure-preserving model reduction for finite-volume models Carlberg, Choi, Sargsyan



GNAT performance (t < 12.5 sec)

vorticity field pressure field

FOM

+ < 1% error in time-averaged drag
+ 229x CPU-hour savings

m FOM: 5 hour x 48 CPU
m GNAT ROM: 32 min x 2 CPU
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Why is LSPG more accurate than Galerkin? [c. et al. 2017]

Theorem (Local a posteriori bounds: BDF schemes)

If the following conditions hold:

Jdk > 0 such that ||[f(x,-) — f(y,")|2 < k|lx —
Vx,y € RV

At small enough such that 0 < h := |ag| — |Bo|kAL
A BDF scheme is employed for time integration, then

k
1 X 1 e
l[oxgll2 < —||"%(¢X2)H2+FZ el 10X 2

|_n

k
1 »
6wl < 7 ing, Wbl D leelloxt Iz

m Ox% = x] — ®XL. m 0x] = x] — ®%]

LSPG minimizes the error bound sequentially in time!
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Structure preservation in model reduction

m Stability [Moore, 1981, Bond and Daniel, 2008, Amsallem and Farhat, 2012,
Kalashnikova et al., 2014]
m Second order [Freund, 2005, Salimbahrami, 2005, Chahlaoui, 2015]
m Delay
[Beattie and Gugercin, 2008, Michiels et al., 2011, Schulze and Unger, 2015]
m Bilinear [Zhang and Lam, 2002, Benner and Damm, 2011,
Benner and Breiten, 2012, Flagg and Gugercin, 2015]
[ ] Inf—sup Stability [Rozza and Veroy, 2007, Gerner and Veroy, 2012,
Rozza et al., 2013, Ballarin et al., 2014]
m Passivity [Phillips et al., 2003, Sorensen, 2005, Wolf et al., 2010]
m Energy conservation
[An et al., 2008, Farhat et al., 2014, Farhat et al., 2015]
m Lagrangian structure [Lall et al., 2003, C. et al., 2015]
m (Port-)Hamiltonian [Polyuga and van der Schaft, 2008,
Beattie and Gugercin, 2011, Afkham and Hesthaven, 2016,
Chaturantabut et al., 2016, Peng and Mohseni, 2016]

What structure should we preserve in finite-volume models?
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Finite-volume discretization: full-order model

Full-order model ODE: % = f(x,t)

XI(i,j) = ﬁ fﬂj U,'()?, t)d)_('

fI(i,j) = _|QLJ‘ frj U,'()_(, t)Vg()_(, t)n[()_(')d)_(»
m Conserved variables u;, i =1,..., n,
m (-component of velocity vy, £ =1, ..., d with d € {1,2,3}
m /-component of normal ny, £ =1, ..., d

mZ:{1,...,n,} x{1,...,Nq} —{1,...,N}, N=n,Nq
Full-order model OAE: r"(x")=0,n=1,...M

t{l

i) = o] /u,(x " — (X, t") |Q | //u, X, t)ve(X, t)ng(X)dXdt

r1(i.j): violation of conservation in u; over Q; and [t", .
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Finite-volume discretization: LSPG ROM
LSPG ROM: minimize ||Ar" (®z) |3

+ Minimizes (weighted) sum of squares

’ t"’\VAVA

of conservation-law violations r
- Does not ensure conservation

anywhere!

LSPG-FV ROM: minimize ||Ar" (®z) |3
z
subject to r"(®z) =0
1 1 tn+1
Bijy = m/u,-(%, ") — ui(X, t")dX + o / /u,-(>?, t)ve(X, t)ng(X)dxdt
Q nF

mZ:{1,...,n} x {1, ...,Ng} = {1,..., N}, with N = n,Ng
-+ Minimizes sum of squares of conservation-law violations
+ Ensure conservation laws are enforced over N subdomains
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LSPG-FV: three cases
mr" RNV 5 RV I(DERLVXP m " RP RN
Underdetermined constraint problem (p > N)
minimize ||Ar" (®z)]|3
z
subject to F"(®z) =0

m Solve with sequential quadratic programming (SQP)

+ Conservation over f_Zj, j=1 .., Ng ensured
Well-posed constraint problem (p = N)
r'(®z) =0

Overdetermined constraint problem (p < N)
minimize ||Ar" (®2) |3 + u| AF" (®z2) |3
z

m Penalty parameter u € R
- No conservation guaranteed
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Hyper-reduction

GNAT-FV ROM: min. ||(P®g)" Pr" (®z) |3
Z N—_—

AGNAT

subject to F"(®z) =0

—n 1 > .n
By = m/u;(x,t Y — (X, ") dX A+ — oY //u, X, t)ve(X, t)ng(X)dX dt
Q

J

ntl nonlinear flux
= aU)Te BT+ b () o
——— —,_/
linear (precompute) nonlinear

m Interface flux g7 1) = [, ui(X, t)ve(X, t)fg(X)dx
T {l oy x {1 Net = {1, ..., N}, with Ng = n,Ne
ma: {1 .. n}x{l.. Ng}— RQ’
mb:{1,...,n}x{1 .. No}—{-1,01}"
m /-component of edge normal Ay, £ =1, ..., d

Approximate interface flux g : RN — RNs using gappy POD.
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Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]

m Offline. Compute:
®, € RY**™ (POD)
P, € {0,1}">*Ne (sample-mesh edges)
] On/ine Approximate flux via gappy POD:
g(x = ®,8(x) 2. g x)—argm|n||P G5 — Pog(x)2

) =
| | I = arg min I —
2

GNAT-FV ROM:  min. |[(P®g)" Prm(®z) |2
z
subject to ¥ (¢z) =0

tn+1

2)® (87 /b/n 0, (Pg®,)" Pglx) dt

linear (precompute) sample flux

FTT(:’J) -

linear (precompute)
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Example: Quasi-1D Euler equation

0.06f ‘ ‘ ‘ ‘
0-04\/
0.02} .
0 L L L L
0 0.05 0.10 0.15 0.20 0.25
spatial variable

cross-sectional
area

m n, = 3 conserved quantities m Training: Mach number
u=(p pv, E) Me {1.7,1.8,1.9,2.0}

m Number of control volumes m Online: Mach number
Nq = 100 M =175

m Total time steps M = 30 m ROM parameters: p =5,

m Time step At =0.01 ng =20
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Global conservation (Ng = 1)

—LSPG- FV

CEGNAT T Tt e Ts T T T e
| — GNAT-FV (exact constramts)

- - GNAT-FV

ool /\/W ]

0 5 10 15 20 25 30

time instance

global conservation violation

+ Global conservation exactly satisfied for exact constraints

+ GNAT-FV: accurate conservation-law approximation
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Global conservation (Ng = 1)

10° T
——Galerkin
——LSPG
100 —LSPG-FV
~+~GNAT P
—GNAT-FV (exa askrEint:

10"F - - GNAT-FV

relative global conservation error

time instance

m Conservation-law constraints: small (but nonzero) error in
globally conserved quantities
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Global conservation (Ng = 1)

10' w
—o—Galerkin
——LSPG
—LSPG-FV )
F ——GNAT AR ARE S
—GNAT-FV (exact constraipisy”
- - GNAT-FV 7, ot

relative error

o
<,
S

10°

time instance

+ Relative state error roughly matches global conservation error
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Varying number of subdomains Ng (penatty parameter 1 = 10)

relative state error
3
relative state error

N/p N/p
(h) LSPG-FV (i) GNAT-FV

+ Conservation-law constraints reduce error by 10x
+ GNAT-FV approximately the same accuracy as LSPG-FV

+ Best accuracy for global conservation (Ng = 1)
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Conclusions

m Structure-preserving model reduction for nonlinear
finite-volume models

m Conservation-law violation equality constraints

m Enforces conservation over subdomains

m Hyper-reduction by applying gappy POD flux approximation
m Numerical experiments

+ Constraints reduced both state and global conservation errors
m Best results obtained for global conservation (Ng = 1)
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Questions?
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relative state error

Galerkin X
I = LSPG
—GNAT
—~LSPG-FV
—<GNAT-FV (exact constraints)
—=GNAT-FV
— Pareto front

S,

10! 10° 10 10%

wall time (seconds)

3

S
S

S,
£

L« GNAT

| = GNAT-FV

Galerkin
--LSPG

-7 LSPG-FV
—~GNAT-FV (exact col

—Pareto front

3
®

relative global conservation error

10 10
wall time (seconds)

m GNAT: Pareto optimal for small wall times
+ GNAT-FV, LSPG-FV: Pareto optimal for smaller errors
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